Chasing the Unicorn: RHIC and the QGP

Unicorn = fantastic and mythical beast!

RHIC = Relativistic Heavy lon Collider @ Brookhaven Natl. Lab (BNL):

New state of hadronic matter, in
thermodynamic equilibrium at temperature T # 0

|.QCD @ nonzero temp.: what is the QGP?

2.The QGP on the Lattice: numerical “experiment”

3. Experiments at RHIC: evidence for “gluon stuff” -

as RHIC made the QGP?

the (high-pt) tail wags the (low-pt) body of the Unicorn

A: Some new kind of matter has been created



Symmetries of QCD: Chiral Symmetry

Like a magnet: broken at low temperature,
restored at some finite temperature.

up & down quarks: “flavor” symmetry = SUL(2) x SUR(2) = O(4)
with strange: SU, (3) x SUR(3)

In broken phase, (approx.) “spin waves”
= (almost massless) pions, K’s, I

(What about 1’ from extra axial U(l)? Instantons....
Could dramatically affect transition properties with light quarks.)



Deconfinement as a Global Z(3) Symmetry

Multiply each quark by a constant phase:

27i/3 —27i/3—

q—=¢ q

q, q—e¢
Mesons and baryons don’t change:

qq — qq , qqq — (€*™/*)3qqq = qqq

but q, qq, etc, are not. Could use exp(- 2 M i/3), too = Z(3) symmetry.

Z(3) spin = Polyakov loop 1 T
= propagator “test” quark => £= g trPexp |19 /O Ao dr

= (trace) color Aharonov-Bohm phase.

Only valid in a pure gauge theory, without dynamical quarks.
In QCD, is the Z(3) symmetry approximate!



Deconfinement & Polyakov Loops
‘t Hooft: part of local SU(3) is global Z(3) ¢ —» 27%/3y

At T=0, confinement => quarks don’t propagate => UNbroken Z(3) symmetry

<€> =0 : I < Tdeconf

As T— o0, by asymptotic freedom, g2 small, pert. thy. ok, => loop is
near one (x3).

=> deconfined phase in which quarks propagate:
<€> # 0, 1> Tdeconf

Deconf. opposite to spins: Z(3) broken at high, and not low, temp.



Order of Phase Transitions

Relation between deconfining and chiral transitions? | or 2 trans.’s?
For QCD, both Z(3) and chiral symmetries are approximate.

Strongly First Order Transition(s)!?
“Of course”! Hadrons # Quarks & Gluons.

Limits:

Deconfining transition (NO quarks): cubic invariant is Z(3) symmetric: €3
first order deconfining trans. (Svetitsky & Yaffe).
# colors => «: first order deconf.g trans.

Chiral transition: two massless flavors: O(desyfh) => second order chiral trans.
three massless flavors: cubic invariant => first order chiral trans.
if axial U(l) restored: first order chiral transition for 2 & 3 flavors

(RDP & Wilczek)



The “Unicorn’:

Quark-Gluon Plasma

Deconfined,
Chirally Symmetric “Phase”
at nonzero temperature

But how to compute
properties of the QGP!?




QGP on the Lattice

Lattice: compute from first principles as lattice spacing a=>0.
But how close is the lattice (today) to the continuum limit, a=0?

“Pure” gauge (no dynamical quarks): present methods close to a=0!

QCD: present methods not close to a=0. All results tentative.
Very hard to put global chiral symmetry on lattice!

View: lattice simulations as (another) experiment... What it has told us to date

Pure gauge: T _d ~ 270 £ |10 MeV.
Weakly first order deconfining trans.

Non-perturbative QGP fromT _d =>3T _d. NO “Of Course”

With quarks: T_c~ 175 £ ? MeV
Order? Crossover today.
Only one transition (chiral = deconfining)
“Flavor independence”: pressure with gks like that without gks.



Lattice: Pressure vs T, Different # Flavors

QCD:“2+1"” flavors (up & down light, strange heavy): BIG changes
p=p(T)=pressure. Plot p/T*4,=> constant as T — o (asymp. freedom)
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Lattice: “Flavor Independence”

Lattice finds amazing property: D T
properly scaled, pressure with quarks ‘ T
like that without: Bielefeld. Pideal \+c
| O=> 10
/
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=> pressure
dominated by
gluons?



(Ren.d) Polyakov Loop with Quarks ~ Pure Gauge

NON-pert. QGP from Tc => ~ 3 Tc (loop far from one)
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Hunting for the “Unicorn”:
the Quark-Gluon Plasma,
in Heavy lon Collisions

“Unicorn” & the QGP: Scott, Stock, Gyulassy...



Why do AA? Big Transverse Size.

pp: protons on protons. “Ordinary”’ hadronic collisions.
AA: nucleus with atomic number A on same.

pA: proton on a nucleus. At RHIC, often dA. Serves as test to tell pp from AA.

WHY AA? Nuclear size 774 ~~ Al/3
Biggest: Pb (lead) or Au (gold), A ~ 200 =>r A~ 7.
Transverse radius of nucleus ~ A2/3 => trans. size ~ 50 x proton.

A — oo infinite nuclear matter. A~200 close to ©? Decide by experiment.



Colliders: Energy, Machines

Basic invariant: total energy in the center of mass, Fem = /s

For AA collisions, energy per nucleon is /s/A = \/syn

Machines: V5 /A
SPS @ CERN: 5=>17 GeV (fixed target)
RHIC @ BNL: 20, 130,200 GeV (collider)
LHC @ CERN: 5500 GeV =5.5TeV (collider, > 2007)

SPS = Super Proton Synchotron: CERN @ Geneva, Switzerland.
RHIC = Relativistic Heavy lon Collider; BNL @ Long Island, NY
LHC = Large Hadron Collider.



Relativistic Kinematics @ Collider
ptl P_Z ~ Y = rapidity=>
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AA collisions: Central vs Peripheral

Central: Peripheral=>
Maximum “Almond” of
Overlap overlap region

Theoretically: would like to compare central AA from small to large A.
Takes a lot of beam time. But running with given A, automatically measure
peripheral collisions.

Exp. variable: # participants.
=400 in central (= 200 + 200)
= 100 => 400 in peripheral (Glauber & other models; agree to 10%)



Typical Heavy lon Event @ RHIC
Total # particles = 1000’s.

Experiments @ RHIC:

STAR: big, 4 11 coverage,y = 12
PHENIX: big, elec.-mag.,y = +2
PHOBOS: small, all rapidity
BRAHMS: small, all rapidity
small = 50 exp.s.

big = 400 experimentalists

400 ~ # part.s/rapidity ~ log(s)?
# theorists ~ log(log(s))?




Particle Distributions vs N, Energy:“Central
Plateau” @ RHIC

4 200 GeV: Central 200 GeV =
e KN Highest energy
. @ RHIC
dN/dI’]/ T 3 .;Ga":' 200 GeV: s 900 particles/unit n

# participants & Peripheral %,

O '
5; \ﬁ 19 GeV =
. ""™"%]9 GeV,,Central Highest energy
: EN L |@ss
19 GeV: . 600 particles/unit n

N = # particles 2

Particle dist’s

qualitatively 1 o ; Peripheral 'i% t‘%:.
same between M -%Edp %,
central & & .'\1%
peripheral. oL o R N L |

-3 0 5 N = pseudo-rapidity

No surprises from overall multiplicity



Why do AA? “Saturation” as a Lorentz Boost

At high energies, incident nucleus is Lorentz contracted.
=> color charge of incident nucleus gets “squashed”. £[>

McLerran & Venugopalan: color charge bigger by A1/3
— A3
A — 00 can use semi-classical methods.

@ central rapidity, gluon saturation = Color Glass.

As semi-classical, predicts logarithmic growth in multiplicity:

dN 1
dy  9*(v/s/A)

~ log(v/s/A)

First surprise from Day |: NO big increase in multiplicity. Approx. log growth.

Also: expect avg. momentum to grow similarly  (p:) ~ log(y/s/A)
(Krasnitz & Venugopalan)



Slow Growth in Multiplicity with Energy

- — Models prior to RHIC
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Good fits to overall multiplicity, centrality dependence (Kharzeey, Levin, Nardi)

STAR: from 130 => 200 GeV, multiplicity increases by 4%,
but NO change in (p;) * 2%. Vs.> 7% increase from Color Glass!



Body of the “Unicorn”:

Majority of particles, at small momenta
<2 GeV.

Tail of the “Unicorn’:

Look at particles at HIGH momentum,
p_t>2 GeV, to probe the body.

The Tail wags the (Dog) Unicorn




Clear Experimental Signal of “Stuff”’: R _AA

Compare spectra in AA to that in pp, especially for “hard” pt > 2 GeV:
From Day |, hard” spectra appear steeper in AA than pp => fewer particles.

R _AA = # particles at a given p_t, in central AA collision/
# particles at the same p_t in pp, central rapidity.
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GeV

all particles
suppressed.



R _AA: Enchancement @ SPS, Suppression @ RHIC

Effect most dramatic for m0’s. SPS: R AA ~25 @ 3 GeV. “Cronin”
RHIC:R AA~0.2 @ 3 GeV.

RHIC: Supp. from energy loss - “stuff” slows fast particles down.
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R _AA: Qualitative Agreement with “Energy Loss”
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Energy Loss: A fast particle going

through a thermal bath loses
energy:

Gyulassy, X.N.Wang,Vitev...Baier,
Dokshitzer, Mueller, Schiff, Zakharov

<= Gyulassy & Vitev: conspiracy
to give flat R_AA @ RHIC.

Need to add several effects,
“Cronin”, energy loss, shadowing...

Is “flat” R_AA for m"0’s special
to RHIC? Will be interesting
@ LHC!



Central AA: at inter. p_t, only mesons suppressed

R _CP: ratio for # particles at given p_t, for central to peripheral collisions
Behaves like R_AA, easier to get data.

Find: baryons not suppressed for pt: 2=> 6 GeV, mesons are.
Mesons suppressed => “stuff” is gluonic.
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Baryon “Bump”at p_t:2 => 6 GeV

Central AA: baryon “bump™at p_t: 2 => 6 GeV

Baryon/meson ratio enhanced by ~3 in
central AA vs pp. First seen in p/TT.

<= A/K ratio: bump peaks at ~ 3 GeV.
Above p_t = 6 GeV, ratios like pp.
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R AA Final State Effect: NOT seen in R_dA

Look at R_dA, analogous ratio in dA collisions @ central rapidity (y=0):
find “Cronin” enhancement in dA, vs suppression in AA.

Color Glass (initial state effect) predicted suppression in dA, not seen.
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Where to find the Color Glass: dA, by the proton

dA: fragmentation region of nucleus tells one about final state effects.
frag. region of proton: in the proton rest frame, feels the large color
charge of the incident nucleus => sensitive to initial state effects:
= the place to find the Color Glass (Dumitru, Gelis, Jalilian-Marian)
BRAHMS: in dA, enhancement @ y=0, suppression @ proton frag. region.
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dA: No “Cronin” Enhancement at High p_t

At high p_t,all R's (R_AA & R _CP) should go to one.
In dA,seen in R_CP for p_t ~ 8 GeV.
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The “Tail” of the Unicorn: Central AA “Eats™ |ets

» In pp collisions at Vs = 130,200 GeV, clearly see “jets”:
high energy quarks (& gluons) in each event.

<="jet” in AA: cannot see on an event by event basis.

: In AA, construct statistical measure: trigger on hard
particle in one direction, look for for associated particle
in the backward direction

forward: 6>p_t>4 GeV adams et al., Phys. Rev. Let. 91 (2003)

- - = back:p t> 2

L L L B N 0
« d+Au FTPC-Au

In pp & dA, clearly see “backward” 0-20%

0.2 -
peak in angular correlation => — p+p Min. bias js?-r R A
associated jet. 'l % Au+Au Central _ -
t <= Away

0.1

In central AA, backward peak is side jet]

gone: “stuff ”in AA “eats” jets.

Central AA redlly “eats” the jet: l" o

essentially nothing at hard momentum
in the backward direction.

"Near side
jet T

A ¢ (radians)



Peripherhal Coll’s: Geometrical Test that AA Eats Jets

In peripheral collisions, “stuff”’ forms an “almond”; a jet has to travel farther
through the almond, out of the reaction plane, than in the reaction plane.

=> Geometrical test that AA “eats” jets: backward jet more strongly suppressed
out of plane than in plane!
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STAR preliminary A ¢ (radians)

Suppression larger out-of-plane



Where does the Backward Jet go in AA?

As before, trigger on forward jet, 6> p_t > 4 GeV. But look at all particles,
t > .15 GeV, in both forward and backward directions.

In direction opposite to jet, suppressed at high p_t (yes), & enhanced at low p_t.

In direction along jet, more particles at low p_t in central AA than pp.
=> “stuff” in central AA shifts backward jet to low momentum,
forward jet drags “stuff” along with it!
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ratio AA/pp=>t & i & |<=suppression
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forward part’s T

p; (Gevic) backward part’s T
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Direct Photons Measured

Direct photons: easily escape, so probe initial state. Without pion suppression,
very hard to measure (true at SPS). With observed suppression of TT"0’s,
measurable. Reasonable agreement at p_t ~ 10 GeV with

Next to Leading Order QCD calculation, = pp times # binary collisions.
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The “Body” of the Unicorn:
Soft Momenta, pt < 2 GeV

Most particles are at soft momentum.
With Tc ~ 200 MeV, expect thermal particle distributions to p_t ~ 2 GeV.
Thousands of particles, should be able to use hydrodynamics...
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Total Chemical Ratios Appear in Thermal Equilibrium
Tep, = 175 MeV

Ly
ﬁ plp AN Z/E QIQ it KIK'Kim pim K'Th ¢/h A/ S/ Qi
1 A T b x 10
5 #r STAR =
1 O PHENIX :
0 PHOBOS - —
A BRAHMS -lr- -
s, =130 GeV _,_lt._
an Model re-fit with all data I _{r‘
T =176 MeaV, Hy = 41 MeV/ _Tl?r_

Braun-Munzinger et al., PLB 518 (2001} 41 D. Magestro (updated July 22, 2002)

OVERALL chemical abundances well fit with T _ch = |75 MeV, Y_baryon ~ 0
(Becattini, Braun-Munziger, Letessier, Rafelski, Redlich, Stachel, Tounsi...)

N.B.: even for multi-strange baryons, with relative abundances ~.1% of pions.



Chemical Ratios vs Energy in AA: T-J plane

Similar fits for chemical abundances also work at lower energies. Baryons
still present at y=0, so need to add baryon chemical potential, .

Find line in T-p plane. Similar fits work for pA, pp - everywhere!
(With corr’s for finite vol., canonical ensemble...) == NOT conclusive.

00 L RHIC critical end-point of first order line?
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p_t Spectra Appear In Thermal Equi. ~ Hydrodyamics
Trin ~ 100MeV (< T.p!) Local Boost Velocity 5 ~ .7c

Hydro. gives good description for most particles, at low p_t< | GeV.
Assumes initial conditions: starts
above Tc in thermal equilibrium, simple
Equation of State (Ist order!) B
Ideal hydro.: NO viscosity...

©  PHENIX prelim.
* STAR prelim. |
+ PHOBOS prelim
V. BRAHMS prellm

10°

- - 0=0.02 fm™
— oc—0.00

|
O
O hydro
a
Large local boost velocity p~.7 c. %
Spectra of heavy particles “turn &
over” at low p_t. B=B(radius). %
3
A

RHIC: first clear evidence for = 107 ) Acev

boost velocity: big! 0 1
Direct fits similar:“Blast-wave” p_t =>

Hydro needs to assume applicable from very early times, .6 fm/c!
Heinz, Hirano, Kolb, Rapp, Shuryak, Teaney... (above Heinz & Kolb)



Success of Hydro.: v2 = Elliptical Flow

Peripheral Coll’s: Start with system which is
anisotropic in momentum space. Exp.y, compute
how spatial anistropy => momentum anistropy.
(Ollitrault, Borghini)

Ty
ve = (cos(2¢)) , tand =p,/px  _, .,
_ . : 0.3 —

v2 => collective behavior: . -
there is “stuff”’, and it sticks. = |

0.2
Hydro works for v2 @ RHIC, not SPS.
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At Low p_t < | GeV, Hydro. works for All Particles

Au+Au; \|5N =200 Ge‘u’ Mid- rapldlly’

o
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o
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Anisotropy Parameter v,

(=]

Transverse Momentum p; (GeV/c)

For all particles,v_2 flat for
p t>1 GeV =>10 GeV -

Isv_2atp t>| GeV measuring
collective flow, or jet-jet correlations?
Apparently: true collective flow.

So why flat?

<= Hydro works for v_2
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HBT Radii: Hydro Fails. “Blast Wave” VWorks

Hanbury-Brown-Twiss (HBT) radii: two-particle correlations for identical
particles, used to determine size (as for stars). Typically: fall off like Gaussian.

Here: three directions for momentum of pion pair (Bertsch & Pratt).
HBT then gives three sizes: along beam (R longitudinal), along line of
sight (R _out), & perpendicular to light of sight (R_side).

Hydro: R_out/R_side > |, increases with p_t. 2;Rout/ Rout(PP)  fRside / Rside(PP) &
Exp.: R _out/R _side ~ |, decreases with p_t! Ta o om " TR .l
%y " " “In m m s
“Blast Wave” works: expanding shell. L e
s a fit, not underlying space-time picture. 21' M S o e V—;:
. RN R Ty
HBT radii ~ same in pp, dA,and AA!  §Rong/Rong®®)}
Even p_t dependence same! ‘a " ] e v i
: " u : m | ™ Au-Au (peripheral)
1_—‘!’ M ¥l —wda STAR

025 0.3 0.35 0.4 0.45 0.5 0.55 I
AERE prelim.



New final state effects:
R _AA
Suppression of backward jets

Also: new initial state effects,
Color Glass in forward dA

Exp.y: for the unicorn of central AA,
the high p_t“tail” wags the
low p_t “body”

HBT? Space-time evolution of the body?
Precise measure of thermal equilibriation!?
p_t fluctuations at low p_t

Perhaps: it is a different beast....
But its still a NEW beast!




“A possible eureka.’



